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Abstract — We will show how to speedup the solution of an 

integral-FEM formulated problem using graphical processing 

units (GPU). With this method, both the phase of forming the 

problem system matrix and the solution of this system are 

considerably accelerated.  

I. INTRODUCTION 

Recent advances in computational electromagnetics shows a 

trend toward increased problem complexity, paired by a 

challenge to maintain scalability of the implemented 

solutions, to take advantage of the increased calculation 

power made available by CPU manufacturers.  Highly 

scalable parallel solutions using MPI on multi-core systems 

or on clusters of multi-core machines were implemented in 

past years and impressive progresses was made in the field 

of high performance computing techniques applied to 

electromagnetic simulations. Exciting opportunities toward 

further increase of computational performance are offered 

the use of Graphical Processing Units (GPU). Each GPU 

node in such a system comprise from several tens to several 

hundreds of independent streams processors. 

One single GPU may be the equivalent of a medium-size 

CPU cluster computer. The software development 

environment that allows parallel computation on the GPU is 

called compute unified device architecture (CUDA). 

Several applications of Graphical Processing Units 

based implementation in computational electromagnetics 

were communicated over last year, including a study on 

sparse vector-matrix multiplication, with a super-linear 

acceleration factor [1], solutions for micromagnetic 

problems calculations [2][3], different implementations for 

wave propagation problems [4][5] or parallel simulation 

method based on the radial point interpolation method [6]. 

Electromagnetic nondestructive testing simulations 

require intensive calculation resources, successive solutions 

of forward problems being performed to solve an inverse 

problem, typically an estimation of a defect geometry from 

a measured signal. For such problems, parallel solutions 

being an option for accelerating the computation. An 

integral formulation for pulse eddy currents,  using MPI 

parallelization, was the subject of the a previous paper [7]. 

In the current paper we demonstrates the efficiency of a 

GPU based-implementation for speedup the calculation of 

system matrix terms and the factorization of the system 

matrix for the same problem. 

II. FORMULATION 

The formulation presented here is based on application of 

T- electric vector potential to the integral equation of eddy 

currents, like in  [7].  Starting from Maxwell equations in 

quasi-stationary form and the constitutive relationship: 

 

JE ⋅ρ= ,            (1) 

 

where J is the current density, E is the electrical field and ρ 

is the resistivity in the conductive domain Ωc. In the 

specimen coordinates frame, the electrical field is: 
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where V is the electric scalar potential and A is magnetic 

vector potential. The magnetic vector potential can be 

calculated using Biot-Savart formula: 
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with A0 being the magnetic vector potential due to the 

impressed current sources: 
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and Ω0  being the air. Only conductive media are meshed. 

The current density is expressed in terms of shape functions 

associated to the edges in the inner co-tree: 
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Applying Galerkin approach, the following equation 

system is obtained: 
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where the terms of matrices [R] and [L] are: 
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The [L] matrix is full, having all terms calculated as sums 

over tethraedras of double volume integrals from the kernel 
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Computation of terms of the matrix [L]is extremely CPU 

intensive and will be subjected to graphical processing unit 

based parallelism. The solution of the forward problem 

modeled using the above presented formulation is used to 

build a database of signal-defect pairs. A set of such signal-

defect pairs is propagated then through a neural network  

for training. 

III. PARALLEL ALGORITHM IMPLEMENTATION 

The critical computational parts are two: calculation of 

inductance matrix [L] and LU decomposition step in the 

solution of the linear equation system. Whilst the former is 

intrinsically parallel and requires virtually no 

synchronization between the nodes, the later requires 

adaptation of the algorithm in order to use the full potential 

offered by the special architecture of GPU.  

For the first problem, the challenge is to select the best 

partitioning of the system matrix, in order to minimize the 

memory requirement for each CUDA thread. 

We will focus on the computation of the terms of the 

double volume integral: 
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We split the matrix with terms τkl into small size blocks. A 

pair of block information is flattened in a data vector and is 

passed to the GPU device to compute the kernel terms for 

the pair of blocks. After calculation, the blocks of τkl terms 

are assembled the full matrix [L] on the host system is 

calculated using CPU with relative small computational 

effort. 

For the LU decomposition, the second inner loop is 

subjected to parallel computation using CUDA.  

IV. RESULTS AND CONCLUSIONS 

 

The simulation setup for the test problem consists in a 

conductive plate, a pancake coil used to energize the 

specimen and a Hall sensor to pick-up the signal, like in [7]. 

The plate is 16 cm × 16 cm, with 10 mm thickness and 

having conductivity σ = 10
6
 S/m. Coil dimensions are inner 

radius Rmin = 2 mm, outer radius Rmax = 5 mm, axial length lz 

= 4 mm, liftoff z = 0.4 mm. The pickup sensor measures the 

magnetic flux density and is placed in the coil axis, at z = 

0.4 mm. The coil signal used is a 70 µs, trapezoidal shaped 

pulse, and with additional rise and fall intervals of 10 µs 

each, with amplitude Imax = 2000 AT, and with a repetition 

frequency of 50 Hz. 55 time steps are simulated for a single 

pulse. 

 

 
 

Fig.  1. Difference signal (magnetic flux density – z component) versus 

time; outer defects OD 80%, with 5, 10 and 15 mm length; scan point is 

y=0.0 mm. 

 

The system used in the first experiments has a 32 bit, 

Core (2) Quad CPU, 2.6 GHz, with 3GB RAM and a 

NVIDIA GeForce 8600 GTS graphical card, with 4 nodes 

and 32 threads. For a problem discretized with 3600 tetra 

elements in the conductive domain, calculation of [τ] matrix 

terms was 56 sec. with CPU. For the LU decomposition the 

time with CPU was 62 sec. We can provide only 

preliminary results for GPU calculation time, of LU 

decomposition, for the moment. The best time obtained 

until now, with incomplete parallelism exploited, was 29 

sec. for the problem size mentioned above. GPU times 

include computation time and memory transfer time. In the 

full paper we will present also the results for the inverse 

problem solution and we will develop further the parallel 

algorithms using CUDA. 

V. REFERENCES 

[1] D. M. Fernández, D. Giannacopoulos and W. J. Gross “Efficient 

Multicore Sparse Matrix-VectorMultiplication for FE 

Electromagnetics”, IEEE Trans. on Magn., vol.45, no.3, pp. 1392-

1395, 2009. 

[2] S. Li, B. Livshitz and V. Lomakin, “Graphics processing unit 

accelerated O(N) micromagnetic solver”, IEEE Trans. on Magn., 

vol.46, no.6, pp. 2373-2375, 2010. 

[3] A. Kákay, E. Westphal and R. Hertel, “Speedup of FEM 

micromagnetic simulations with graphical processing units”, IEEE 

Trans. on Magn., vol.46, no.6, pp. 2303-2306, 2010. 

[4] N. Gödel, N. Nunn, T. Warburton and M. Clemens, “Scalability of 

higher-order discontinuous Galerkin FEM computations for solving 

electromagnetic wave propagation problems on GPU clusters”, IEEE 

Trans. on Magn., vol.46, no.6, pp. 3469-3472, 2010. 

[5] P. Sypek, A. Dziekonski and M. Mrozowski “How to render FDTD 

computations more effective using a graphics accelerator”, IEEE 

Trans. on Magn., vol.45, no.3, pp. 3469-3472, 2009. 

[6] S. Nakata, Y. Takeda, N. Fujita and S. Ikuno, “Parallel algorithm for 

meshfree radial point interpolation method on Graphics Hardware”, 

IEEE Trans. on Magn., to be published. 

[7] G. Preda, M. Rebican and F.I. Hantila, “Integral formulation and 

genetic algorithms for defects geometry reconstruction using pulse 

eddy currents”, IEEE Trans. on Magn., vol. 46, no. 8, pp. 3433-

3436, 2010. 

 
 


